Classification of AEDs

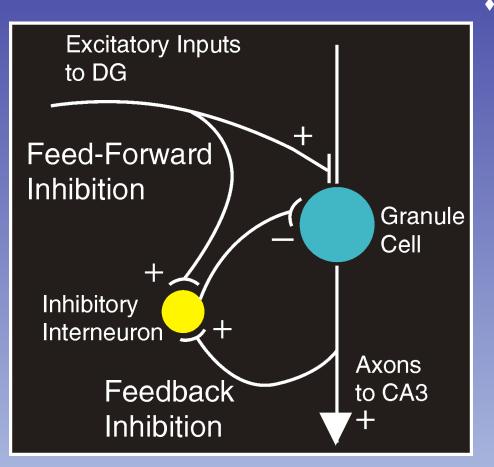
Classical

- Phenytoin
- Phenobarbital
- Primidone
- Carbamazepine
- Ethosuximide
- Valproate (valproic acid)
- Trimethadione (not currently in use)

Newer

- Lamotrigine
- Felbamate
- Topiramate
- Gabapentin
- Tiagabine
- Vigabatrin
- Oxycarbazepine
- Levetiracetam
- Fosphenytoin

In general, the newer AEDs have less cettals beed ating effects than the classical AEDs


Cellular Mechanisms of Seizure Generation

- Excitation (too much)

 Ionic—inward Na⁺, Ca⁺⁺ currents
 Neurotransmitter—glutamate, aspartate
- Inhibition (too little)

 Ionic—inward CI⁻, outward K⁺ currents
 Neurotransmitter—GABA

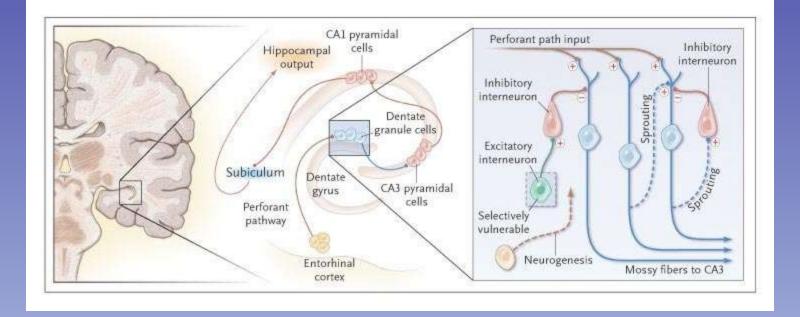
Basic Mechanisms Underlying Seizures and Epilepsy

 Feedback and feed-forward inhibition, illustrated via cartoon and schematic of simplified hippocampal circuit

Babb TL, Brown WJ. Pathological Findings in Epilepsy. In: Engel J. Jr. Ed. Surgical Treatment of the Epilepsies. New York: Raven Press 1987: 511-540.

Neuronal (Intrinsic) Factors Modifying Neuronal Excitability

- Ion channel type, number, and distribution
- Biochemical modification of receptors
- Activation of second-messenger systems
- Modulation of gene expression (e.g., for receptor proteins)


Extra-Neuronal (Extrinsic) Factors Modifying Neuronal Excitability

- Changes in extracellular ion concentration
- Remodeling of synapse location or configuration by afferent input
- Modulation of transmitter metabolism or uptake by glial cells

Mechanisms of Generating Hyperexcitable Networks

- Excitatory axonal "sprouting"
- Loss of inhibitory neurons
- Loss of excitatory neurons "driving" inhibitory neurons

Hippocampal Circuitry and Seizures

Targets for AEDs

- Increase inhibitory neurotransmitter system— GABA
- Decrease excitatory neurotransmitter system glutamate
- Block voltage-gated inward positive currents— Na⁺ or Ca⁺⁺
- Increase outward positive current—K⁺
- Many AEDs pleiotropic—act via multiple mechanisms

Epilepsy—Glutamate

- The brain's major excitatory neurotransmitter
- Two groups of glutamate receptors
 - Ionotropic—fast synaptic transmission
 - NMDA, AMPA, kainate
 - Gated Ca⁺⁺ and Gated Na+ channels
 - Metabotropic—slow synaptic transmission
 - Quisqualate
 - Regulation of second messengers (cAMP and Inositol)
 - Modulation of synaptic activity
- Modulation of glutamate receptors
 - Glycine, polyamine sites, Zinc, redox site

dr shabeel

Epilepsy—Glutamate

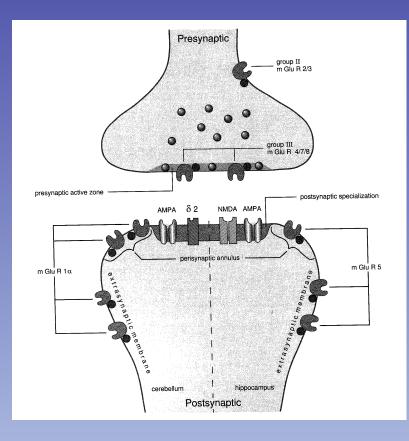


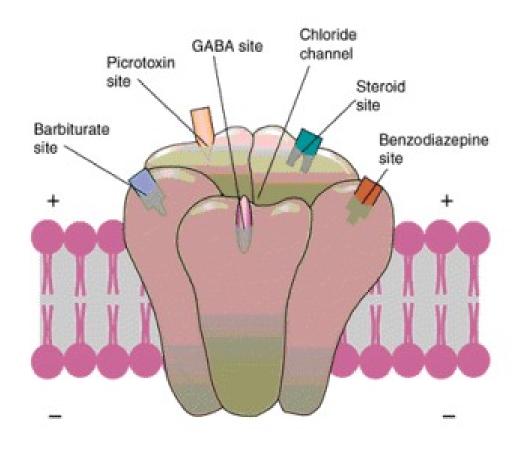
Diagram of the various glutamate receptor subtypes and locations

From Takumi et al, 1998

dr shabeel

Glutamate Receptors as AED Targets

NMDA receptor sites as targets


- Ketamine, phencyclidine, dizocilpine block channel and have anticonvulsant properties but also dissociative and/or hallucinogenic properties; open channel blockers.
- Felbamate antagonizes strychnine-insensitive glycine site on NMDA complex
- AMPA receptor sites as targets
 Topiramate antagonizes AMPA site

- Major inhibitory neurotransmitter in the CNS
- Two types of receptors
 - GABA_A—post-synaptic, specific recognition sites, linked to CI⁻ channel
 - GABA_B presynaptic autoreceptors, mediated by K⁺ currents

GABA_A Receptor

Schematic Illustration of a GABA_A Receptor, with Its Binding Sites

AEDs That Act Primarily on GABA

- Benzodiazepines (diazapam, clonazapam)

 Increase frequency of GABA-mediated chloride channel openings
- Barbiturates (phenobarbital, primidone)
 - Prolong GABA-mediated chloride channel openings
 - Some blockade of voltage-dependent sodium channels

AEDs That Act Primarily on GABA

Gabapentin

- May modulate amino acid transport into brain
- May interfere with GABA re-uptake
- Tiagabine
 - Interferes with GABA re-uptake
- Vigabatrin (not currently available in US)
 - elevates GABA levels by irreversibly inhibiting its main catabolic enzyme, GABAtransaminase

Na+ Channels as AED Targets

- Neurons fire at high frequencies during seizures
- Action potential generation is dependent on Na+ channels
- Use-dependent or time-dependent Na+ channel blockers reduce high frequency firing without affecting physiological firing

AEDs That Act Primarily on Na+ Channels

Phenytoin, Carbamazepine

 Block voltage-dependent sodium channels at high firing frequencies—use dependent

Oxcarbazepine

- Blocks voltage-dependent sodium channels at high firing frequencies
- Also effects K+ channels

Zonisamide

 Blocks voltage-dependent sodium channels and T-type calcium channels

Ca²⁺ Channels as Targets

- Absence seizures are caused by oscillations between thalamus and cortex that are generated in thalamus by T-type (transient) Ca²⁺ currents
- Ethosuximide is a specific blocker of T-type currents and is highly effective in treating absence seizures

What about K+ channels?

- K+ channels have important inhibitory control over neuronal firing in CNS—repolarize membrane to end action potentials
- K+ channel agonists would decrease hyperexcitability in brain
- So far, the only AED with known actions on K+ channels is valproate
- Retiagabine is a novel AED in clinical trials that acts on a specific type of voltage-dependent K+ channel

Pleiotropic AEDs

Felbamate

- Blocks voltage-dependent sodium channels at high firing frequencies
- May modulate NMDA receptor via strychnine-insensitive glycine receptor

Lamotrigine

- Blocks voltage-dependent sodium channels at high firing frequencies
- May interfere with pathologic glutamate release
- Inhibit Ca++ channels?

The Cytochrome P-450 Isozyme System

- The enzymes most involved with drug metabolism
- Enzymes have broad substrate specificity, and individual drugs may be substrates for several enzymes
- The principle enzymes involved with AED metabolism include CYP2C9, CYP2C19, CYP3A

Enzyme Inducers/Inhibitors: General Considerations

- Inducers: Increase clearance and decrease steady-state concentrations of other drugs
- Inhibitors: Decrease clearance and increase steady-state concentrations of other drugs

The Cytochrome P-450 **Enzyme System** Inducers **Inhibitors** phenobarbital valproate primidone topiramate (CYP2C19) oxcarbazepine (CYP2C19) phenytoin carbamazepine felbamate (CYP2C19) felbamate (CYP3A) (increase phenytoin, topiramate (CYP3A) phenobarbital) oxcarbazepine (CYP3A)

dr shabeel

AEDs and Drug Interactions

- Although many AEDs can cause pharmacokinetic interactions, several newer agents appear to be less problematic.
- AEDs that do not appear to be either inducers or inhibitors of the CYP system include: Gabapentin Lamotrigine Tiagabine Levetiracetam Zonisamide

Carbamazapine

- First line drug for partial seizures
- Inhibits Na+ channels—use dependent
- Half-life: 6-12 hours
- Adverse effects: CNS sedation. Agranulocytosis and aplastic anemia in elderly patients, rare but very serious adverse. A mild, transient leukopenia (decrease in white cell count) occurs in about 10% of patients, but usually disappears in first 4 months of treatment. Can exacerbate some generalized seizures.
- Drug interactions: Stimulates the metabolism of other drugs by inducing microsomal enzymes, stimulates its own metabolism. This may require an increase in dose of this and other drugs patient is taking.

Phenobarbital

- Partial seizures, effective in neonates
- Second-line drug in adults due to more severe CNS sedation
- Allosteric modulator of GABA_A receptor (increase open time)
- Absorption: rapid
- Half-life: 53-118 hours (long)
- Adverse effects: CNS sedation but may produce excitement in some patients. Skin rashes if allergic. Tolerance and physical dependence possible.
- Interactions: severe CNS depression when combined with alcohol or benzodiazapines. Stimulates cytochrome P-450

Primidone

- Partial seizures
- Mechanims—see phenobarbital
- Absorption: Individual variability in rates. Not highly bound to plasma proteins.
- Metabolism: Converted to phenobarbital and phenylethyl malonamide, 40% excreted unchanged.
- Half-life: variable, 5-15 hours. PB ~100, PEMA 16 hours
- Adverse effects: CNS sedative
- Drug interactions: enhances CNS depressants, drug metabolism, phenytoin increases conversion to PB

Benzodiazapines (Diazapam and clonazapam)

- Status epilepticus (IV)
- Allosteric modulator of GABA_A receptors—increases frequency
- Absorption: Rapid onset. Diazapam—rectal formulation for treatment of SE
- Half-life: 20-40 hours (long)
- Adverse effects: CNS sedative, tolerance, dependence.
 Paradoxical hyperexcitability in children
- Drug interactions: can enhance the action of other CNS depressants

Valproate (Valproic Acid)

- Partial seizures, first-line drug for generalized seizures.
- Enhances GABA transmission, blocks Na+ channels, activates K+ channels
- Absorption: 90% bound to plasma proteins
- Half-life: 6-16 hours
- Adverse effects: CNS depressant (esp. w/ phenobarbital), anorexia, nausea, vomiting, hair loss, weight gain, elevation of liver enzymes. Hepatoxicity is rare but severe, greatest risk <2 YO. May cause birth defects.
- Drug interactions: May potentiate CNS depressants, displaces phenytoin from plasma proteins, inhibits metabolism of phenobarbital, phenytoin, carbamazepine (P450 inhibitor).

Ethosuximide

- Absence seizures
- Blocks T-type Ca++ currents in thalamus
- Half-life: long—40 hours
- Adverse effects: gastric distress—pain, nausea, vomiting. Less CNS effects that other AEDs, transient fatigue, dizziness, headache
- Drug interactions: administration with valproate results in inhibition of its metabolism